Banach spaces of polynomials as “large” subspaces of ℓ∞-spaces

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BANACH SPACES OF POLYNOMIALS AS “LARGE” SUBSPACES OF l∞-SPACES

In this note we study Banach spaces of traces of real polynomials on R to compact subsets equipped with supremum norms from the point of view of Geometric Functional Analysis.

متن کامل

some properties of fuzzy hilbert spaces and norm of operators

in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...

15 صفحه اول

Strongly Proximinal Subspaces in Banach Spaces

We give descriptions of SSDand QP -points in C(K)-spaces and use this to characterize strongly proximinal subspaces of finite codimension in L1(μ). We provide some natural class of examples of strongly proximinal subspaces which are not necessarily finite codimensional. We also study transitivity of strong proximinal subspaces of finite codimension.

متن کامل

Convergence of Dirichlet Polynomials in Banach Spaces

Recent results on Dirichlet series ∑ n an 1 ns , s ∈ C, with coefficients an in an infinite dimensional Banach space X show that the maximal width of uniform but not absolute convergence coincides for Dirichlet series and for m-homogeneous Dirichlet polynomials. But a classical non-trivial fact due to Bohnenblust and Hille shows that if X is one dimensional, this maximal width heavily depends o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2014

ISSN: 0022-1236

DOI: 10.1016/j.jfa.2014.05.006